000 01424 a2200313 4500
001 1351697455
005 20250317111602.0
008 250312042017xx 12 eng
020 _a9781351697453
037 _bTaylor & Francis
_cGBP 47.99
_fBB
040 _a01
041 _aeng
072 7 _aT
_2thema
072 7 _aPBF
_2thema
072 7 _aPBW
_2thema
072 7 _aT
_2bic
072 7 _aPBF
_2bic
072 7 _aPBW
_2bic
072 7 _aMAT000000
_2bisac
072 7 _aMAT002000
_2bisac
072 7 _aMAT003000
_2bisac
072 7 _a512.5
_2bisac
100 1 _aQingwen Hu
245 1 0 _aConcise Introduction to Linear Algebra
250 _a1
260 _bChapman and Hall/CRC
_c20170922
300 _a230 p
520 _bConcise Introduction to Linear Algebra deals with the subject of linear algebra, covering vectors and linear systems, vector spaces, orthogonality, determinants, eigenvalues and eigenvectors, singular value decomposition. It adopts an efficient approach to lead students from vectors, matrices quickly into more advanced topics including, LU decomposition, orthogonal decomposition, Least squares solutions, Gram-Schmidt process, eigenvalues and eigenvectors, diagonalizability, spectral decomposition, positive definite matrix, quadratic forms, singular value decompositions and principal component analysis. This book is designed for onesemester teaching to undergraduate students.
999 _c4195
_d4195