000 | 01424 a2200313 4500 | ||
---|---|---|---|
001 | 1351697455 | ||
005 | 20250317111602.0 | ||
008 | 250312042017xx 12 eng | ||
020 | _a9781351697453 | ||
037 |
_bTaylor & Francis _cGBP 47.99 _fBB |
||
040 | _a01 | ||
041 | _aeng | ||
072 | 7 |
_aT _2thema |
|
072 | 7 |
_aPBF _2thema |
|
072 | 7 |
_aPBW _2thema |
|
072 | 7 |
_aT _2bic |
|
072 | 7 |
_aPBF _2bic |
|
072 | 7 |
_aPBW _2bic |
|
072 | 7 |
_aMAT000000 _2bisac |
|
072 | 7 |
_aMAT002000 _2bisac |
|
072 | 7 |
_aMAT003000 _2bisac |
|
072 | 7 |
_a512.5 _2bisac |
|
100 | 1 | _aQingwen Hu | |
245 | 1 | 0 | _aConcise Introduction to Linear Algebra |
250 | _a1 | ||
260 |
_bChapman and Hall/CRC _c20170922 |
||
300 | _a230 p | ||
520 | _bConcise Introduction to Linear Algebra deals with the subject of linear algebra, covering vectors and linear systems, vector spaces, orthogonality, determinants, eigenvalues and eigenvectors, singular value decomposition. It adopts an efficient approach to lead students from vectors, matrices quickly into more advanced topics including, LU decomposition, orthogonal decomposition, Least squares solutions, Gram-Schmidt process, eigenvalues and eigenvectors, diagonalizability, spectral decomposition, positive definite matrix, quadratic forms, singular value decompositions and principal component analysis. This book is designed for onesemester teaching to undergraduate students. | ||
999 |
_c4195 _d4195 |