000 01930 a2200373 4500
001 1315362198
005 20250317111604.0
008 250312042018xx 17 eng
020 _a9781315362199
037 _bTaylor & Francis
_cGBP 160.00
_fBB
040 _a01
041 _aeng
072 7 _aPBM
_2thema
072 7 _aPBV
_2thema
072 7 _aPHU
_2thema
072 7 _aPBD
_2thema
072 7 _aPBW
_2thema
072 7 _aPBM
_2bic
072 7 _aPBV
_2bic
072 7 _aPHU
_2bic
072 7 _aPBD
_2bic
072 7 _aPBW
_2bic
072 7 _aMAT012000
_2bisac
072 7 _aMAT036000
_2bisac
072 7 _aMAT004000
_2bisac
072 7 _aMAT000000
_2bisac
072 7 _a514.2242
_2bisac
100 1 _aAlexander Stoimenow
245 1 0 _aDiagram Genus, Generators, and Applications
250 _a1
260 _bChapman and Hall/CRC
_c20180903
300 _a192 p
520 _bIn knot theory, diagrams of a given canonical genus can be described by means of a finite number of patterns ("generators"). Diagram Genus, Generators and Applications presents a self-contained account of the canonical genus: the genus of knot diagrams. The author explores recent research on the combinatorial theory of knots and supplies proofs for a number of theorems. The book begins with an introduction to the origin of knot tables and the background details, including diagrams, surfaces, and invariants. It then derives a new description of generators using Hirasawa’s algorithm and extends this description to push the compilation of knot generators one genus further to complete their classification for genus 4. Subsequent chapters cover applications of the genus 4 classification, including the braid index, polynomial invariants, hyperbolic volume, and Vassiliev invariants. The final chapter presents further research related to generators, which helps readers see applications of generators in a broader context.
999 _c4427
_d4427